ANALISIS TEGANGAN PENAMBAL DAN GAYA PAKU KELING PADA PEMASANGAN ANTENA ATC TRANSPONDER PESAWAT BOEING 737-200

  • Sukahir Politeknik Penerbangan Palembang
  • Setyo Hariyadi S.P. Politeknik Penerbangan Surabaya
Keywords: jurnal, naskah, panduan, penulisan, template

Abstract

Pesawat Boeing 737-200 di produksi dari tahun 1967-1988, sehingga peralatan navigasi pada era tersebut belum banyak kemanjuan di banding saat ini, sehingga perlu dimodifikasi dengan melakukan penambahan peralatan navigasi yang salah satunya adalah ATC Transponder. Peralatan ATC Transponder terdiri dari 2 komponen utama, yaitu Transceiver (alat pemancar dan penerima sinyal gelombang radio) dan antena. Peralatan transceiver dipasang pada cockpit, sedangkan antena dipasang pada fuselage skin yang berlokasi di body station 427 bagian atas. Untuk menguatkan pemasangan antena, maka diperlukan penambal (doubler). Berdasarkan data SRM Boeing 737-200, geometrinya berukuran panjang 165,1 mm, lebar 266,7 mm dan tebalnya 2 mm. Penambal direkatkan dengan menggunakan paku keling sebanyak 74 dengan diameter 4,76 mm pada fuselage skin. Fuselage skin dimodelkan berupa pelat utama (exixsting skin) dengan ukuran panjang 354,33 mm, lebar 401,4 mm dan tebal 1,8 mm. Material pelat utama dan penambal adalah aluminium T2024-T3, modulus elastisitasnya 72 GPa. Data-data dari material dan  SRM Boeing 737-200 dianalisis menggunakan metode elemen hingga dengan software PATRAN NASTRAN. Hasil analisis menunjukan bahwa resultan beban geser maksimum yang terjadi pada paku keling adalah sebesar 675,76 N dan paku keling yang mendapat beban maksimum tersebut posisinya paling jauh dari lubang. Berdasarkan batas nilai kekuatan geser maksimum paku keling dengan diameter 4,76 mm sebesar 4498 N, maka paku keling masih aman digunakan

Downloads

Download data is not yet available.

References

Alamsyah, Wulandari, A. E., & Ramadhan, B. H. (2020). Analisa Kekuatan Bracket Pada Kapal Ro-Ro Menggunakan Aplikasi Finite Element. SPECTA Journal of Technology, 4(3), 97–105.
B.K, S., & Kumar, R. (2014). Stress Analysis and Fatigue Life Prediction of Wing- Fuselage Lug Joint Attachment Bracket of a Transport Aircraft. International Journal of Research in Engineering and Technology, 03(15), 818–822. https://doi.org/10.15623/ijret.2014.0315154
Baran, D., & Petre, M. (2021). Hydrostatic pressure loads for a tank using “CID Distributed Loads” fields in a PATRAN FEM model. INCAS Bulletin, 13(4), 197–204. https://doi.org/10.13111/2066-8201.2021.13.4.16
Bruhn, E. F. (2008). Analysis and Design of Flight Vehicle Structures. GRAN Corporation.
Chen, F., Zhao, H., Huo, Y., Di, Q., Wang, W., & Zhou, X. (2021). A stress amplification model to evaluate the stress concentration of tool joint under complex loads. Journal of Physics: Conference Series, 1986(1). https://doi.org/10.1088/1742-6596/1986/1/012128
Ion, D. (2014). Computing Method of Forces on Rivet. Incas Bulletin, 6(1), 21–36. https://doi.org/10.13111/2066-8201.2014.6.1.3
Jiang, X., Lv, Z., Qiang, X., & Zhang, J. (2021). Improvement of Stop-Hole Method on Fatigue-Cracked Steel Plates by Using High-Strength Bolts and CFRP Strips. Advances in Civil Engineering, 2021. https://doi.org/10.1155/2021/6632212
K.S.Vishwanath, V. (2016). Damage Tolerance Evaluation of an Aircraft Skin Structure By Mvcci Technique (2D Analysis) Using Msc – Nastran / Patran. International Journal of Research in Engineering and Technology, 05(05), 510–516. https://doi.org/10.15623/ijret.2016.0505096
Knight, C. E. (1994). A Finite Element Method Primer for Mechanical Design. Department of Mechanical Engineering Virginia Polytechnic Institute and State University.
Liu, N., Huang, Y. X., Cai, W., & Chen, K. (2020). Application of Improved Single-Hole Superposition Theory in Nonequal Cross-Section Tunnel Intersection. Advances in Civil Engineering, 2020. https://doi.org/10.1155/2020/8837480
Niranjana, S. J., Patel, S. V., & Dubey, A. K. (2018). Design and Analysis of Vertical Pressure Vessel using ASME Code and FEA Technique. IOP Conference Series: Materials Science and Engineering, 376(1). https://doi.org/10.1088/1757-899X/376/1/012135
Obaid, S. hatam, Jaber, J., & Ibrahim, H. R. (2022). The Geometry of Punch Cross Section Effect on Stress and Strain Values of Root Punch. October. https://doi.org/10.14704/nq.2022.20.7.NQ33159
Okoro, U., Ogwuagwu, V. O., Babawuya, A., & Olugboji, O. A. (2013). General Sensitivity Analysis of Dynamic Properties of Metal Rubber backed Active Magnetic Bearing using Nastran. 3rd Biennial Engineering Conference of Federal University of Technology Minna, Nigeria., May 2013. https://doi.org/10.13140/RG.2.1.3276.8489
Pilkey, W. D. (1998). “Peterson’s stress concentration factors” Second edition, by W.D. Pilkey. In Strain (Second, Vol. 34, Issue 2). John Wiley & Sons, Inc. https://doi.org/10.1111/j.1475-1305.1998.tb01083.x
Profile, S. E. E. (2023). Finite Difference Analysis of Stress Distribution Around an Elliptical Hole in a Plate Subjected to Axial Loading. May.
Saravanan, G., Arul Johnson, A., & Pandiarajan, P. (2018). Finite element analysis of aircraft wing joint and fatigue life prediction under variable loading using MSC patran and nastran. International Journal of Mechanical Engineering and Technology, 9(11), 1111–1119.
Wicahyadi, D., Chairi, M., & Nasmirayanti, R. (2022). Studi Numerik Kinerja Balok Baja Dengan Variasi Jarak Pengaku Menggunakan Program Msc. Patran/Nastran. Civil Engineering Collaboration, 7, 80–86. https://doi.org/10.35134/jcivil.v7i2.45
Published
2024-05-14
How to Cite
1.
Sukahir, Hariyadi S.P. S. ANALISIS TEGANGAN PENAMBAL DAN GAYA PAKU KELING PADA PEMASANGAN ANTENA ATC TRANSPONDER PESAWAT BOEING 737-200. JIA [Internet]. 2024May14 [cited 2024Jul.3];16(02):117-28. Available from: https://journal.ppicurug.ac.id/index.php/jurnal-ilmiah-aviasi/article/view/928